# This is the OFFICIAL SITE for computer science students in el shrouk academy , df3t 2015 isa :D
Saturday, 20 October 2012
Friday, 25 May 2012
tech. English
unit 14 answer : http://www.mediafire.com/?pffe74cs31xee6p
Wednesday, 23 May 2012
Sunday, 20 May 2012
Wednesday, 9 May 2012
Operation Research
OR sections after midterm : http://www.mediafire.com/?feqlt1lf9q73eso
dol a5er 2 sections OR : http://www.mediafire.com/?sw4zlx8989zc8hd
dh a5er section math : http://www.mediafire.com/?ziwjmal8hc5zw96
dol el-2sheets : http://www.mediafire.com/?bjif61j27evrlom
w dh 7lohm w mn 8eer pass : http://www.mediafire.com/?kyv4pip13imbrpd
math exam 2011 answer by eng-A.arafa : http://www.mediafire.com/?q2g7kpc0l7lz2ln
Tuesday, 1 May 2012
Sh.A.CS '15: Electronics
lecture 7 : http://www.mediafire.com/?s9cg7t7mudx9x9m
lecture 8 + sheets 3w 4 w 5 : http://www.mediafire.com/?8x3b8jnlg4bd83u
lec. 9 a5er 5 zakrohom l2nha hya hya lec 8 : http://www.mediafire.com/?vta9uzrv43xlp3f
de sections kolha : http://www.mediafire.com/?z84cgti2bplbzhg
a5er 2 sections : http://www.mediafire.com/?v8bj1eqcfyohkjj
de a5er 7aga ll elec. nazry w sheet eng-shimaa w sheet 3,4,5 tany :) : http://www.mediafire.com/?ma783ae3wb9xgx8
Tuesday, 27 March 2012
Sunday, 12 February 2012
Saturday, 11 February 2012
Monday, 9 January 2012
num system
Numbering systems
Decimal: {0, 1, 2, 3, 4, 5…}
Binary: {0, 1}
Octal: {0, 1, 2, 3, 4, 5, 6, 7}
Hexadecimal: {0, 1, 2, 3, 4, 5, 6, 7, 8, 9, A, B, C, D, E, F}
Conversion methods
- From decimal to binary (divide the decimal number by 2 then take the remainder –up right-to be the binary representation of the original number)
Example: (13)10 à(----)2
Original # | division | Remainder |
13 | 2 | 1 |
6 | 2 | 0 |
3 | 2 | |
1 | 2 | 1 |
0 | | |
So the result will be (1101) 2
- From binary to decimal: multiply each digit with 2 to the power of (0 to 7) in its order from right to left then sum the final result
Example: (1101)2à (….)10
Original # | 1 | 1 | 0 | 1 |
Multiplication | 1*23 | 1* 22 | 0*21 | 1* 20 |
Result for each digit | 8 | 4 | 0 | 1 |
addition | 13 |
So the result will be (13)10
Special case: fraction:
Example: (1101.10)2à (….)10
Original # | 1 | 1 | 0 | 1 | . | 1 | 0 |
| |
multiplication | 1*23 | 1* 22 | 0*21 | 1* 20 | . | 1*2-1 | 0*2-2 |
| |
Result for each digit | 8 | 4 | 0 | 1 | | .5 | 0 | ||
addition | 13 | . | .50 | ||||||
So the result will be (13.5)10
- From binary to octal: each 3 binary digits represents 1 octal digit
Octal= 23 binary
Example: (1011101) 2à (…) 8
Original # | 1011101 | ||
Divide to 3 digits | 001 | 011 | 101 |
Convert to decimal | 1 | 3 | 5 |
Concatenate (result) | 135 |
The result will be (135) 8
- From octal to binary: convert each octal digit to its binary representation then concatenate the result
Example: (357) 8 à (…….)2
Original # | 357 | ||
For each octal digit | 3 | 5 | 7 |
Convert to binary | 011 | 101 | 111 |
Concatenate (result) | 011101111 |
The result will be (011101111)2
- From binary to Hexadecimal: each 4 binary digits represents 1 hexadecimal digit
Hexadecimal= 24 binary
Example: (1011101) 2à (…) 16
Original # | 1011101 | |
Divide to groups of 4 digits | 0101 | 1101 |
Convert to decimal | 5 | 13 |
Convert to hexadecimal | 5 | D |
Concatenate (result) | 5D |
The result will be (5D) 16
- From Hexadecimal to binary: convert each hexadecimal digit to its binary representation then concatenate the result
Example: (D7B) 16 à (…….)2
Original # | D7B | ||
Convert each hexadecimal digit to binary | 1101 | 0111 | 1011 |
Concatenate (result) | 110101111011 |
The result will be (110101111011)2
- From any numbering system to decimal: multiply each digit by the target system base to the power of (0 to 7) in its order from right to left then sum the final result
Example: (247)8à (….)10
Original # | 2 | 4 | 7 |
|
The digit multiplied by the Base to the power from 0-7 from R to L | 2* 82 | 4*81 | 7* 80 |
|
Result for each digit | 128 | 32 | 7 |
|
addition | 167 |
So the result will be (167)10
- From decimal to any numbering system: (divide the decimal number by the base of the target system then take the remainder –up right-to be the new representation of the original number)
Example: (4037)10 à(----)16
Original # | division | Remainder |
4037 | 16 | |
252 | 16 | 12àC |
15 | 16 | 15àF |
0 | | |
So the result will be (FC5) 16